COMPUTER-AIDED DESIGN OF MICROPROGRAMMED DEVICES
M. S. DOLINSKY, Cand.Sc. (Technical Sciences), Senior Instructor
A. A. HARRASOV, Student and I. M. ZISELMAN, CandSc. (Technical Sciences), Senior Scientific Fellow
Skorina State University in Gomel Sovetskaya 104, 246699 Gomel, Belarus
Techniques for the design of electronic digital circuits in the form of microprogrammed devices are considered. The techniques make it possible to reduce development time to a fraction of current times. For these purposes, a language is created for describing the operating algorithms of microprogrammed devices and software tools for debugging these devices. By means of the debugging algorithms, an input task for a computer-aided design system that performs a layout design stage is created automatically.
1. INTRODUCTION
The basic problem in the construction of ever more complicated and larger and larger digital circuits is that of determining how to increase the efficiency of the labor of the system developers. Meanwhile, the principal efficiency criterion is the length of time from the start of implementation of the design to delivery of the finished product to market [1].
Another no less important problem facing developers is that of selecting the most appropriate design architecture that would yield integrated circuits that function with maximum reliability, entail acceptable costs, and make it easy to modify the design in the future [4—5].
Today, most system designers use the following design methods or combinations of such methods:
• graphical input of the specification of the integrated circuit by means of a library of base elements of flip-flops, decoders, multiplexers, buffers, and 4NOR and 2NAND and similar elements;
• Boolean equations;
• truth tables;
• finite automaton state equations or diagrams.
The level of abstraction of these methods of design does not rise above the gate level or, in the optimal case, the register-transfer level.
However, whatever method is selected by the system developer, any approach will assume that there exists a reliable and debugged operating algorithm for the device which is to be created, on the basis of which the flowchart is translated, by means of one or more of the above methods, into a particular technology.
Many design systems provide tools for use in testing, early in the design process, whether the design as a whole is correct, but in this case once a proof of working capacity exists, it is then necessary to perform the "genuine" design process, working mainly at the logic gate level. Very often, designers first describe the algorithm of the device that is being designed in a high-level programming language, usually in C or C**. This is not remarkable, since it is far easier to program an algorithm than it is to design a circuit that implements this design. The use of VHDL high-level language for the description of devices also fits into the schema we have described, since there exist, in fact, a "synthesizable" VHDL and a complete VHDL [very high-level design language].
Thus, design is carried out in four stages:
• development of model
• debugging of model
• design proper
• debugging of design
Through the use of the principle of microprogrammed automata it is possible to greatly reduce the development time down to just the amount of time needed to create the design itself, and the entire process then consists in just two stages [4]:
• specification (programming) of the algorithm
• debugging of the algorithm
The level of abstraction in such an approach rises to a new height, the algorithmic level.
2. STRUCTURE OF MICROPROGRAMMED AUTOMATON
In the general form, a microprogrammed automaton constitutes a feedback control system that incorporates two interacting components, a control device [CD] and an operating device [OD] which, in interaction with each other, implement a particular algorithm (Figure 1).
The circuit operates synchronously, the control device operates in response to the leading edge of the timing pulse, and the operating device, in response to the trailing edge.
The length of the timing pulse is selected so as to allow time for the longest (in terms of time) microoperation in the operating device or the longest transition in the control device to run, with additional time allowed for setting new conditions on new values in the registers in the operating device.
Control Device
The control device is a finite automaton (Figure 2):
Combinatorial circuit 1 produces the next state of the control device;
Combinatorial circuit 2 produces Yi, the resolution of the microoperations.
[image: image1.png]CTRL_IN— cD |—— cTRL_OUT

DATA_IN — oD | — DATA_OUT

Figure 1. Flowchart of microprogrammed automaton

Xi microcondition
Yi microoperation
DATAJN input data
DATA_OUT output data
CTRLJN input control signals
CTRL_OUT output control signals
elk timing pulse
[image: image2.png]clk

Combinatorial l— !

Xi — Circuit 1 Register

CTRL_IN

Combinatorial
Cireuit 2 f—————— Yi

CTRL_OUT

Figure 2. Flowchart of control device.

Depending on the microconditions Xi, the current state, and the control signals CTRLJN that have been received, the control device enters a succeeding state in which it transmits to the operating device the signals Yi, to resolve the microoperations defined in the given state.
Operating Device
The operating device is a combinatorial circuit with its own internal registers and external data lines. Its operating algorithm is as follows:
• depending on the signals Yi received from the control device, the operating device performs microoperations, consisting in different actions on the registers and input and output to the external contacts;
• once the microoperations have been performed, the operating device produces, in each state, microconditions Xi according to which the control device enters its next state.
3. BRIEF DESCRIPTION OF MICROPROGRAMMING LANGUAGE
The microprogramming language used in the devices (MPDL [microprogram description language]) supports debugging and is a simple and convenient tool for writing programs using the smallest possible instruction set, thus making it possible to describe algorithms efficiently. The language is open for further development, and the instruction set may be complemented as necessary.
The structure and principles for writing programs, mnemonics, and the format of instructions in the language are similar to those of that version of Assembler for the most common family of i80x86 processors.
The general format of a command in the language of microprogrammed devices is the following:
Label field Operation Code Operand Comment Field

 Field Field
LABEL: MOV C, dC Load register C
The operands are the symbolic names of the registers or logical constants, which are defined by means of declarative directives.
The directives of the language are unexecutable operators, and are not translated into the circuit specification, instead serving only to control the translation process:
EQU symbolic assignment of logical constants
REG declarations of register storage
FLAG declarations of 1 bit register storage
CONT declaration of external contacts
BEGIN start of program execution
END end of program execution
PROC start of procedure
ENDP end of procedure
The commands are executable operators, and serve for describing the operating algorithm of the particular device that has been developed. The executable operators are translated into the circuit specification in the input language of the target computer-aided design system. Following is a list of the executable commands:
• seek and transmit commands (SET, MOV, CLR)
• arithmetic commands (INC, DEC, ADD, ADC, NEG, SUB)
• logical commands (AND, OR, XOR, NOT)
• shift instructions (ROL, ROR, SHL, SHR, SAL, SAR, RCL, RCR)
• binary shift instructions (ROLD, RORD, SHLD, SHRD, SALD, SARD, RCLD, RCRD)
• conditional branch commands (JZ, JEQ, JODD, JB, JA, JL, JG, JNZ, JNEQ, JNODD, JBE, JAE, JLE, JGE)
• unconditional branch command (JMP)
• subroutine call instruction (CALL)
4. ADVANTAGES OF A DIGITAL CIRCUIT CREATED AS A MICROPROGRAMMED DEVICE
It is possible to implement virtually any circuit in the form of a microprogrammed device, for example, different controllers, processors, arithmetic and logic units, fast Fourier transform circuits, etc. The advantages of such an approach are as follows:
• the developer is freed from the need to keep track of inessential details in the internal layout of the circuit and the need to take into account special elements of the technology;
• only the operating algorithm of the device, i.e., its functional behavioral model, has to be described and debugged;
• the debugging algorithm may be carried over to the level of the circuit layout automatically;
• tests that are employed in debugging the algorithm may be used in testing the finished circuit;
• the standard architecture of a microprogrammed device makes it possible to automatically realize the fully programmed algorithm in a designed device.
Thus, the proposed method is, we believe, a convenient alternative to the existing systems of computer-aided design for digital integrated circuits. It enables the developer to concentrate on the essential core of the device which is to be designed, i.e., its operating algorithm, meanwhile significantly reducing the time needed to develop and debug the device.
Under the conditions of the contemporary marketplace, such a design system enables developers of electronic equipment to turn an initial idea into a finished product in shorter periods of time, i.e., greatly increases their competitiveness.
5. CONCLUSION
We suggest that the following steps be undertaken to implement the idea of designing digital electronic circuits in the form of microprogrammed devices:
• different approaches to the implementation of digital circuits by means of a rnicroprogrammed device should be considered;
• a base version of the language of microprogrammed devices should be defined;
• support of INTER v4.xx multifunctional debugger-interpreter language with a set of nontraditional debugging capabilities should be implemented [5];
• a translator of programs written in the language of microprogrammed devices into a formal circuit specification should be implemented, with the resulting microprogrammed device checked using tests from the initial program in the INTER debugging environment
Studies have been performed on the creation of a software toolkit adapted to the input design language of an arbitrary system for the design of integrated circuits. Such a translator will make it possible to translate an algorithm written in the language of microprogrammed devices, together with tests, into the input language of an actual design system which, once the resulting design has been shown to be correct, will realize the final layout design. Thus, a "walk-through" cycle of design steps and their complete automation may be realized.
REFERENCES

1. B. Bailey and S. Leef, "Making the shift toward integrated systems design," Electronic Design, pp. 80-86, July8,1996.
2. P. George, "Block based design: creating a system on a chip," Electronic Design, pp. 86-92, July 8, 1996.
3. P. Fernandes, "Moving from RTL to behavioral-level design," Electronic Design, pp. 92-98, July 8,1996.
4. M. Dolinsky, I. Ziselman, A. Harrasov, and V. Kovaluck, "Program system for computer-aided synthesis of device with microprogram control," Proc. Intern. Conf. "CAD of Digital Devices," Minsk, 1995, pp. 146-147.
5. M. Dolinsky, I. Ziselman, and S. L. Belotskii, "Adaptable debugger-interpreter of Assembler-language programs," Programmirovanie (Moscow), no. 6, pp. 36-45, 1995.
Received 5 June 1996 (originally submitted 10 February 1997)
Advances in Engineering Software 31 (2000) 197-201
